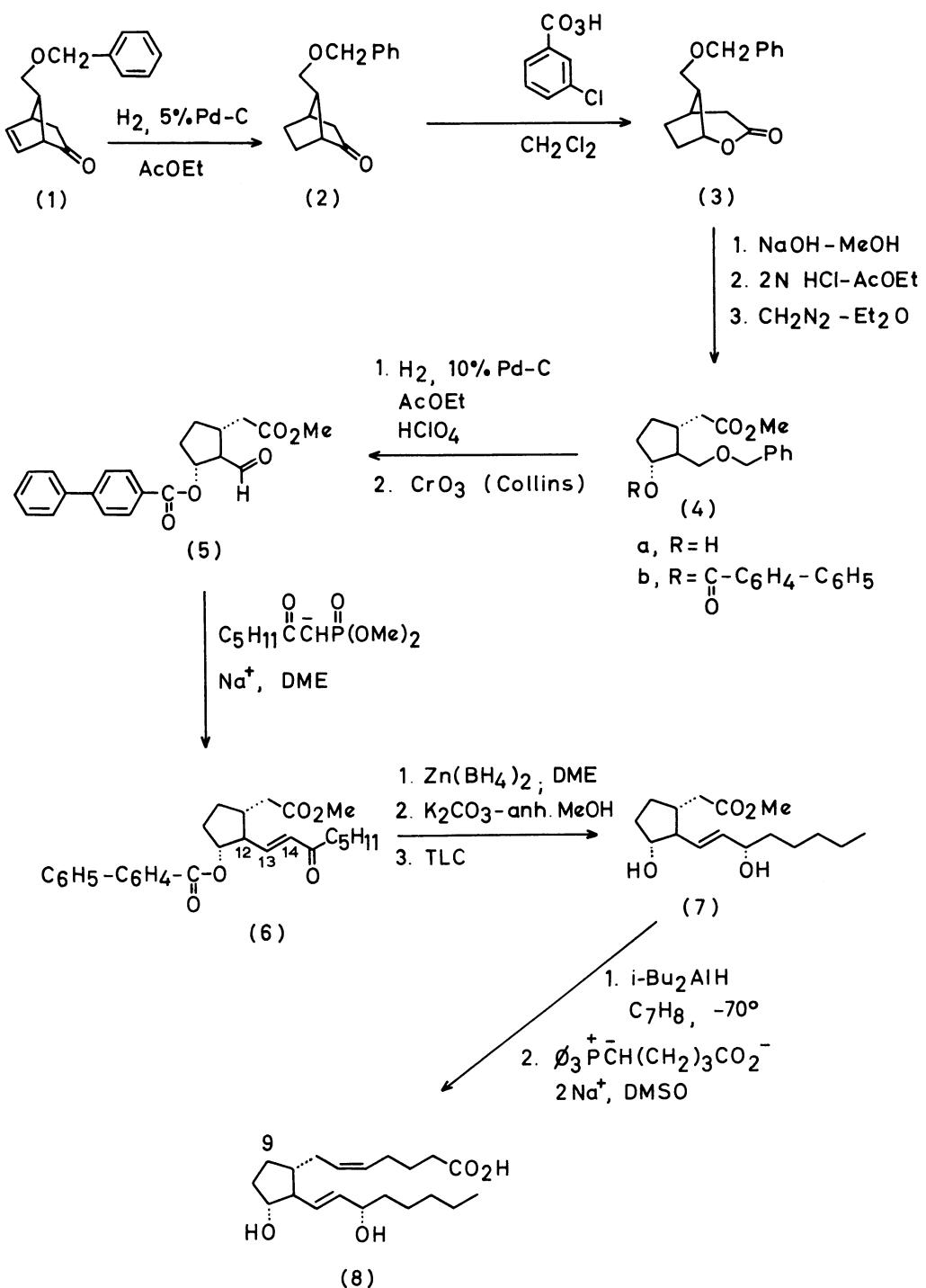


TOTAL SYNTHESIS OF A 9-DESOXY-PROSTAGLANDIN

Angel Guzman and Pierre Crabbe^{x1}


Research Laboratories, Syntex, S.A.,
Apartado Postal 10-820, Mexico 10, D.F., Mexico

The unsaturated ketone (1) is reduced catalytically into the saturated keto-derivative (2). Further transformations allow to open the bicyclic intermediate (2) into the tri-substituted cyclopentane derivative (4). This is then converted by classical methods into the 9-desoxy-prostaglandin(8).

Previously, we have described the synthesis of 11-desoxy² and 9,11-bis-desoxy³ prostaglandins. The recent publication mentioning the preparation of a 9-desoxy-dihydro-prostaglandin⁴ prompts us to report our work on the stereospecific synthesis of the 9-desoxy-prostaglandin (8).

Catalytic hydrogenation of the bicyclic ketone (1)⁵ with 5 % Pd-C affords the saturated ketone (2) [ν_{max} 1735 cm^{-1} ; δ 3.38 ($\text{CH}_2-\text{O}-$), 4.5 (CH_2-Ph), 7.3 p.p.m. (aromatic H)⁶, (70 %). Baeyer-Villiger oxidation of (2) with m-chloroperbenzoic acid provides the corresponding lactone (3) (95 %). Opening of the ϵ -lactone (3) with methanolic sodium hydroxide, followed by careful neutralization and esterification with diazomethane, give the alcohol-ester (4a) [ν_{max} 3400 and 1725 cm^{-1} ; δ 3.65 p.p.m. (CO_2Me)], in 75 % overall yield from (3). Esterification of the hydroxyl of (4a) with p-phenylbenzoyl chloride furnishes the corresponding di-ester (4b) (95 %) [ν_{max} 1725, 1715, and 1610 cm^{-1}].

Hydrolysis of the benzyl ether group of (4b) with 10 % Pd-C, in an hydrogen atmosphere in ethyl acetate solution in the presence of a catalytic amount of HClO_4 , affords the corresponding alcohol (95 %), which is oxidised with Collins' reagent⁷ to provide the aldehyde (5). This is immediately alkylated with the sodium salt of dimethyl 2-oxoheptylphosphonate to provide the enone di-ester (6) with its u.v. at λ_{max} 274 nm (ϵ 24,000) and its typical n.m.r. signals at δ 3.63 (CO_2Me), 7.8 (d, $J_{13,14}$ 16 Hz), 6.8 and 6.9 p.p.m. (dd, $J_{12,13}$ 7 Hz, $J_{14,13}$ 16 Hz) (70 %). Zinc borohydride reduction of the carbonyl group at C-15 yields a mixture of isomeric-alcohols 15(R)- and 15(S),

separated by preparative t.l.c., after selective hydrolysis of the biphenylbenzoate with anhydrous methanolic potassium carbonate.

The desired 11,15-diol (7) is then submitted to the usual sequence of reactions.^{3,5} Reduction of the ester group of (7) with di-isobutylaluminium hydride, provides the corresponding aldehyde,^{3,8} which is immediately reacted with 5-triphenylphosphoniopentanoic acid di-sodium salt⁵, to afford the (\pm)-9-desoxy-prostaglandin (8).

REFERENCES

1. New address : Laboratoire de Chimie Organique, C.E.R.M.O., Université Scientifique et Médicale, B.P. 53, 38041-GRENOBLE, France.
2. P. Crabbé and A. Guzmán, Tetrahedron Letters, 115 (1972) ; P. Crabbé, A. Cervantes and M.C. Meana, Chem. Comm. 119 (1973).
3. P. Crabbé, A. Cervantes and A. Guzmán, Tetrahedron Letters, 1123 (1972).
4. M.P.L. Caton, T. Parker and G.L. Watkins, Tetrahedron Letters, 3341 (1972).
5. E.J. Corey, T.K. Schaaf, W. Huber, U. Koelliker and N.W. Weinshenker, J. Amer. Chem. Soc., 92, 397 (1970).
6. Satisfactory elemental analyses or mass spectra were obtained for all new compounds. N.m.r. and i.r. spectra consistent with their formation.
7. J.C. Collins, W.W. Hess and F.J. Frank, Tetrahedron Letters, 3363 (1968).
8. L.I. ZAKHARKIN and I.M. Khorlina, Tetrahedron Letters, 619 (1962).

(Received May 17, 1973)